Consensus Modeling for HTS Assays Using In silico Descriptors Calculates the Best Balanced Accuracy in Tox21 Challenge

نویسندگان

  • Ahmed Abdelaziz
  • Hilde Spahn-Langguth
  • Karl-Werner Schramm
  • Igor V. Tetko
چکیده

1 Rosettastein Consulting UG, Freising, Germany, 2 Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, TUM-Technische Universität München, Freising, Germany, 3 Institute for Medical and Pharmaceutical Proficiency Assessment, Mainz, Germany, 4 Department of Pharmaceutical Sciences, Karl-Franzens-University Graz, Graz, Austria, 5 Molecular EXposomics, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany, 6 BigChem GmbH, Neuherberg, Germany, 7 Helmholtz Zentrum München Research Center for Environmental Health (HMGU), Institute of Structural Biology, Neuherberg, Germany

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR Modeling of Tox21 Challenge Stress Response and Nuclear Receptor Signaling Toxicity Assays

The ability to determine which environmental chemicals pose the greatest potential threats to human health remains one of the major concerns in regulatory toxicology. Computational methods that can accurately predict a chemical’s toxic potential in silico are increasingly sought-after to replace in vitro high-throughput screening (HTS) as well as controversial and costly in vivo animal studies....

متن کامل

Novel consensus quantitative structure-retention relationship method in prediction of pesticides retention time in nano-LC

In this study, quantitative structure-retention relationship (QSRR) methodology employed for modeling of the retention times of 16 banned pesticides in nano-liquid chromatography (nano-LC) column. Genetic algorithm-multiple linear regression (GA-MLR) method employed for developing global and consensus QSRR models. The best global GA-MLR model was established by adjusting GA parameters. Three de...

متن کامل

In-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors

In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...

متن کامل

Advances in the Development and Validation of Test Methods in the United States

The National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) provides validation support for US Federal agencies and the US Tox21 interagency consortium, an interagency collaboration that is using high throughput screening (HTS) and other advanced approaches to better understand and predict chemical hazards to humans and the environment. T...

متن کامل

Modeling The Capacity Factor of Analytes in Micellar Electrokinetic Chromatography Using Computational Descriptors

       A multiple linear regression model is proposed to calculate capacity factor of  analytes using structural features computed using HyperChem software. The  chemical descriptors of analytes were computed using HyperChem software and  regressed against the experimental capacity factors of analytes collected from the  literature. The absolute average percentage deviation (AARD) and individua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016